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Abstract
Numerical audio simulations have a long history and a proven track

record. But the usage of comprehensive audio simulations in games has re-
ceived less attention in comparison to the optimised geometric approaches.

Within the last ten years, researchers have developed ways to use
numerical simulations in real-time environments like video games. Most
notably, Project Acoustics [Raghuvanshi, 2017], a Microsoft research effort
that runs a numerical simulation offline, similar to light baking, and uses
the salient information extracted from the simulation during runtime.
More recently, Planeverb [Rosen et al., 2020] is a tool similar to Project
Acoustics but allows for dynamic geometry at the cost of a simplified
simulation.

However, Project Acoustics requires the use of Microsoft Azure and only
works for Wwise, and Planeverb only works for Unity and the Windows
operating system. As there is no easy to access, cross-platform tool, this
dissertation creates its own numerical simulation tool called ‘OpenPL’ -
Open Propagation Library - that integrates with Wwise, FMOD, Unreal
Engine and Unity. Furthermore, OpenPL runs on the user’s local machine,
thereby negating the need for a cloud service like Azure.
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Terminology

OpenPL “Open Propagation Library”. This library is the disserta-
tion’s artefact

Wwise Audio middleware software used in games
FMOD Audio middleware software used in games
Unity Game engine
Unreal Engine Game engine
Wave Simulation Refers to the simulation of sound/acoustic waves
Project Triton A Microsoft research project that focuses on Wave Simula-

tion
Projet Acoustics The commercial release of Project Triton
FDTD Finite-Difference Time-Domain. A simulation technique for

electronics and sound
libigl C++ geometry processing library
Eigen C++ maths library for algebra
OpenGL Cross-platform rendering programming interface
Glad OpenGL loader
GLFW OpenGL window creator and context manager
GMP An arithmetic library that allows for arbitrary precision
MPFR An arithmetic library that allows for arbitrary precision

with floats
Boost Peer-reviewed C++ libraries
CGAL Geometry algorithms
MatPlot++ C++ wrapper of the Matlab library “Matplot”. Allows for

scientific graph rendering
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Introduction
The video game industry is fiscally larger than both the film and music in-
dustry combined [Milijic, 2021]; with over two billion gamers globally, it is
clear that video games are an integral part of today’s world. Starting in the
1950s [Brookhaven National Laboratory, 2013], video games have evolved from
simple interactive entertainment into culturally defining works of art. Through
this evolution, game technology has advanced in leaps and bounds.

One of the prevailing advancements in recent history is Ray Tracing [Jones,
2020,Ashworth, 2019,Martindale and Roach, 2021,Judd, 2020]. Ray Tracing is
a rendering technique that traces rays from each pixel to test its interactions
with the virtual world. These rays emulate the effects of real-world light phe-
nomena like refraction and reflections. Ray Tracing is popular in non-real-time
environments where Ray Tracing’s expense is not a concern like film and televi-
sion [Ashworth, 2019]. However, since around 2018, some games have adopted
the technique to heighten visual fidelity [Burnes, 2018].

For audio, advancements are not so loudly announced. However, many game
audio professionals are familiar with the middleware tools Wwise and FMOD
1. Both advertise themselves as solutions for interactive audio. Wwise’s tagline
is “The Engine Powering Interactive Audio” [Audiokinetic, 2021a] and FMOD’s
is “Made for games - FMOD is the solution for adaptive audio” [Firelight
Technologies, 2021].

While both advertise as interactive audio solutions, tools are emerging that focus
on spatial audio - a term this dissertation will refer to as ‘recreating real-world
audio effects and phenomena in a game’. For example, Wwise is promoting
its new suite of features called “Wwise Spatial Audio”, creating audio that is
affected by the game world [Audiokinetic, 2021b].

On top of middleware tools like Wwise pushing spatial audio, other tools are
emerging that further promote the development of spatial audio technology.
Tools like Steam Audio, Google Resonance and Oculus Audio.

Like Ray Tracing using rays, many tools and technologies like the ones listed
above use rays to query information about the game world 2. Rays are relatively
cheap and quick to use and have been part of games dating all the way back
to DOOM and Wolfenstein 3D [Sanglard, 2018]. However, rays hold significant
pitfalls when used to simulate audio [Siltanen et al., 2010].

Rays are effective when used for rendering due to their similarities to real-world
light rays. However, audio propagates more similarly to a ‘wave’ [Kuttruff, 2000].
Because of this difference, audio rays struggle to capture diffraction - the effect
all of us hear in daily life like sounds travelling around objects.

1Middleware refers to cross-engine tools that allow for powerful audio behaviour that is not
normally available in a game engine.

2It is hard to determine the exact technology behind closed source projects but many tools
advertise their use of rays, or similar geometric approaches, to calculate audio effects.
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However, the technology exists which captures all audio effects like diffraction.
This technology is wave simulations, also known as numerical audio simula-
tions. For decades, the finite-difference time-domain (FDTD)3 method has been
employed by people to simulate electromagnetics and sound. But the FDTD
method requires long simulation times and large amounts of computer resources.

Likely for the exact reasons above, the FDTD method has not been used in
a video game. However, in the last decade, researchers have managed to run
numerical simulations for video game environments [Raghuvanshi et al., 2017].

First to emerge was Microsoft Research’s Project Triton. Around ten years
ago, Project Triton managed to run a numerical simulation over interactive
environments with limited runtime cost [Raghuvanshi et al., 2009]. This was
achieved by running the simulation ‘offline’, meaning the simulation is done
by the developer before shipping to the player/user. The saved output of the
simulation is read at runtime, making the cost of Project Triton roughly the cost
of reading information from the computer’s storage.

Project Triton has since evolved into Project Acoustics, a commercially available
tool implemented in a small number of games as of this date [Microsoft, 2021].

However, because of the long simulation times that require completion before
deployment of the game, dynamic geometry is currently not possible. But 2020’s
Planeverb proved numerical simulations are possible when limiting the simulation
to two dimensions, and running the simulation at 10 frames per second [Rosen
et al., 2020].

3FDTD can be roughly thought of as a numerical simulation running over a discretised grid
or lattice at multiple time steps.
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History Of Video Games

Date Event Notes
1952 First video game A.S. Douglas creates “OXO”, an electronic ver-

sion of Tic-Tac-Toe
1958 First entertain-

ment video
game

Physicist William Higinbotham creates “Ten-
nis For Two”. This creation marks the first
electronic game made for entertainment pur-
poses

1961 Games expand
to multiple com-
puters

“Spacewar!” was the first game shared to mul-
tiple computers, allowing more people to play
the game

1971/1972 The first use of
audio

“Computer Space” and “Pong” become the first
games to use audio

1972 First-generation
consoles

The first consoles were very primitive by to-
day’s standards, and many consoles did not
have sound

1976 Second-
generation
consoles

Consoles could start playing synthesised sounds

1981 3D graphics “Monster Maze” was the first game to use 3D
graphics

1982 US gaming mar-
ket crashes

In 1982, the US market faced a massive crash
due to over saturation and low-quality games

1982 Compact Disc
(CD) released

With CDs, games could fit more data and de-
liver more content to the player

1983 Third-
generation
consoles

The release of the NES by Nintendo marks the
onset of third-generation consoles. Consoles
still use synthesised sounds, but the NES could
play 8-bit audio

1987 Fourth-
generation
consoles

Fourth-generation consoles mark the “16-bit
era”. Consoles can play 16-bit audio

1993 Fifth-
generation
consoles

Fifth-generation consoles mark the “32-bit era”.
The Playstation is released and can play 24
channels of 16-bit 44.1kHz ADPCM samples.
The Playstation also has audio effects built-
in. Consoles begin using CD storage over car-
tridges

1995 FMOD released FMOD is an audio middleware tool aimed to
help integrate audio into games. With hard-
ware able to play more audio than ever, there
is more of a market for tools like FMOD
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1998 Sixth-
generation
consoles

Games start using the internet. Consoles
like the Xbox support multiplayer experiences.
Some consoles have support for 5.1 surround
sound

2000 Wwise released Wwise is a similar product to FMOD and saw
wide market adoption in years to follow. It is
currently the industry standard for game audio

2005 Seventh-
generation
consoles

Consoles can now play 48kHz 16-bit audio. For
reference, CD-quality audio is 44.1kHz 16-bit

2012 Eighth-
generation
consoles

Further improvements to quality. Some con-
soles support 7.1 surround sound

2016 Console 4K sup-
port

Microsoft and Sony release 4K support for their
consoles. However, some of this support is
limited to videos, not games

2018 First Ray Trac-
ing

Battlefield V becomes the first game to release
with ray-tracing

2020 Microsoft and
Sony release
their next-
generation
consoles

Microsoft and Sony promise support for super-
fast loading with SSDs, 4K output and spatial
audio support

Video games started as interesting experiments for academics receiving leftover
technology from World War II. In 1952, A.S. Douglas made “OXO” for his
doctoral dissertation, in 1958, Higinbotham created “Tennis For Two” for a
welcome day, and in 1961, MIT students created “Spacewar!”.

However, games quickly became commercial products that would venture further
than just university campuses. With the advent of personal computers, consoles
and arcade machines, games became more accessible to the general public.

In its roughly seventy-year history, video games have gone from simple pixels
on a screen to photo-realistic experiences enjoyed by many. Along the way,
companies and teams have created many new and remarkable technologies to
enhance a game’s experience.

Many consumers know about Ray Tracing, which first released with Battlefield V
in 2018. But not many know about Project Acoustics that released in 2015 with
AltspaceVR. Regardless of the exact dates, the recentness of both technologies
was a major inspiration for OpenPL. Due to how new the technology was, and
how fast hardware was improving, it was felt numerical simulations would be an
important topic to research.
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Ray Casting Clarified

Ray Casting Shooting a ray to test its interactions with
the world

First Generation Ray Casting Shooting a ray to turn the 2D level into a
3D projection (Wolfenstein 3D, DOOM)

Ray Tracing Tracing rays to render a 3D scene, similar
to the propagation of real-world light rays

Figure 1: First Generation Ray Casting Example Similar To Wolfenstein 3D

Figure 2: Ray Tracing Example In Unreal Engine

This dissertation defines ray casting as the act of shooting a ray or beam and
testing its interactions with the virtual environment. Games utilise rays in many
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different areas like physics, rendering and audio. Due to its prevalence, game
engines make rays easy to create and, more importantly, cheap to use.

Ray casting previously defined the technology behind Wolfenstein 3D and DOOM.
This dissertation will refer to this type of ray casting as “First Generation Ray
Casting”. In both examples, the game would shoot rays into a 2D map; the
information gathered from the rays would inform the 3D renderer about the
location of walls and their projection.

Ray Tracing defines shooting many rays - one for each pixel - with the results
of the ray producing the final image. These rays can bounce multiple times to
simulate lighting, reflections and more.

Ray Casting For Audio

Figure 3: Raycast In Unity With FMOD
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Shown above is a screenshot of the code used in the artefact to produce a quick
working example of occlusion with a single raycast. Listening to the video titled
“2_RaycastVersusOpenPL.mp4” in the appendix will provide the reader with an
understanding of the results of raycasting.

Figure 4: Scene 1. Raycasting Works Effectively

Figure 5: Scene 2. Raycasting Is Too Stong And Does Not Account For Diffrac-
tion

Two conclusions can be drawn from the video: raycasting is similarly effective to
numerical options when the occluding object is completely blocking line of sight
but fails to sound correct when the object is small and only partially blocking
the path between sound and listener. A single raycast will create these effects
because it does not account for the wave-like nature of sound.
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However, the example above is primitive and tools that use rays employ different
methods to hide the problems demonstrated by the video. For example, the game
Nier:Automata uses multiple rays [Kohata, 2018], fired in random directions,
for its reverberation calculations. Rays are successful in this instance because a
single blocked ray does not drive the entire simulation; only the combination
of all the rays informs the final audio values, thereby limiting the number of
‘mistakes’.

Also important to mention is that the raycasting example from above took
roughly thirty minutes to complete - including recording the video. On the other
hand, OpenPL took months to develop, months to research and needed help from
the creators of Project Acoustics and Planeverb to complete. When comparing
the effort involved between a simple raycast solution, even with workarounds,
and implementing a numerical simulation, the difference is staggering.

Wave Simulation Explained
Wave Simulation is an all-encompassing term that can refer to many types of
acoustic simulation. However, for this dissertation, Wave Simulation will be
defined as any numerical simulation. The other type of simulation is a geometric
simulation that employs techniques like ray casting.

Types of geometric simulations include Ray Tracing [Cao et al., 2016,Schissler and
Manocha, 2016] (not the rendering technique), Beam Tracing [Funkhouser et al.,
2004] and Image Source Method [Siltanen et al., 2010]. Examples of numerical
methods are Finite-Difference Time-Domain (FDTD), Finite-Element Method
(FEM) and Digital Waveguide Mesh (DWM) [Siltanen et al., 2010,Raghuvanshi
et al., 2009].

As explained and demonstrated previously, geometric approaches struggle to
accurately simulate diffraction and require workarounds - like using multiple
rays - while numerical approaches correctly account for diffraction and all audio
phenomena.

As briefly touched upon, numerical methods require large amounts of computa-
tional resources. The approach taken by Project Acoustics/Triton still takes 75
minutes to simulate over a living room scene no larger than 10 meters in diameter,
with larger scenes taking upwards of 350 minutes. The memory requirements
are also in the 100s of MBs.
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∂2p

∂2t
− c2∇2p = F (x, t)

p pressure
t time
c speed of light

∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 Laplacian in 3D

[Raghuvanshi et al., 2009]

The formula above accurately captures the nature of sound, as observed in the
real world. Both the FDTD method and the one employed by Project Acoustics
uses this formula as the basis for their equations. Reading [Raghuvanshi et al.,
2009] and [Schneider, 2010] will give the reader a better understanding of both
techniques than could be explained in this dissertation.
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Literature Review
Research into audio simulation is extensive but is limited regarding its application
within games. Project Triton stands as the first example of a numerical simulation
for video games [Raghuvanshi et al., 2010]. Project Triton started with the
2009 paper titled “Efficient and accurate sound propagation using adaptive
rectangular decomposition” [Raghuvanshi et al., 2009]. The paper provides a
way of increasing acoustic simulation accuracy while decreasing the CPU cost
and RAM usage. This feat is achieved by exploiting the solution to the acoustic
wave equation on rectangular domains. In principle, the wave simulation runs
over large rectangular volumes of space rather than simulating over many small
voxels.

Figure 6: Project Triton Rectangular Decomposition

However, until 2010’s paper “Precomputed wave simulation for real-time sound
propagation of dynamic sources in complex scenes” [Raghuvanshi et al., 2010], the
research was not ready for interactive game environments. This paper separates
the early reflections and late reflections of the simulated impulse response into
time domain and frequency domain, and renders this binaurally at runtime for
an interactive listener and source position.

Further research has expanded on these papers. 2013’s “Wave-based sound
propagation in large open scenes using an equivalent source formulation” [Mehra
et al., 2013] improves performance in large open scenes. 2014’s “Parametric
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wave field coding for precomputed sound propagation” [Raghuvanshi and Snyder,
2014] greatly improves upon the 2010 paper by extracting salient parameters
from the impulse response. These parameters are efficient to store and only take
100µs per source to decode at runtime. 2018’s “Parametric directional coding for
precomputed sound propagation” [Raghuvanshi and Snyder, 2018] adds support
for directional sound.

However, Project Triton suffers from real-time support and cannot handle moving
geometry. Matthew Rosen solved this problem in 2020 with his paper “Interactive
sound propagation for dynamic scenes using 2D wave simulation” [Rosen et al.,
2020]. While not strictly an advancement of Project Triton’s simulation using
rectangular spaces, this technique can handle moving geometry. This is solved
using the FDTD method. The FDTD method is generally considered slow and
was even Project Triton’s main comparison for speed [Raghuvanshi et al., 2009],
yet FDTD can work comparatively quickly in only two dimensions [Rosen et al.,
2020]. By running the simulation ten times a second, the technique can produce
a convincing audio simulation.

Ten frames a second is a relatively slow simulation speed. [Rosen et al., 2020]
proves it is fast enough to create convincing audio effects but is slow to what is
possible. [Allen and Raghuvanshi, 2015] shows that a 2D simulation ran on the
GPU can achieve speeds of 128,000Hz.

FDTD is a prevalent acoustic simulation technique with a history going back to
the 1960s. The main breakthrough comes from Kane Shee-Gong Yee’s work to
create the “Yee Grid”. The Yee Grid staggers the electrical and magnetic fields,
allowing Maxwell’s equations to run more accurately.

James Maxwell published his equations in 1865. These equations took Ampere’s
and Faraday’s Laws and turned them into working equations. The two laws were
conceived in the early 1800s and only finalised by 1831.
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Methodology
OpenPL is a dynamic library built using JUCE with integrations in Wwise,
FMOD, Unreal and Unity. As demonstrated in earlier sections, raycasts, and
geometric approaches, require workarounds and are less effective than numerical
alternatives. However, they do have their benefits, namely in speed and usability.
But [Rosen et al., 2020] and [Allen and Raghuvanshi, 2015] proved speed can be
overcome. The final hurdle is usability.

Project Acoustics requires Microsoft Azure, a paid tool, and Planeverb only
supports the Windows operating system. For these reasons, both tools are
limited in their usability. On the other hand, OpenPL’s simulation is ran on
the user’s machine. This choice makes the tool more accessible to independent
developers who may not have the budget for a cloud service. Finally, the use
of JUCE and its cross-platform capabilities allow developers on any operating
system to use the tool.

OpenPL’s premade integrations with Unreal Engine, Unity, FMOD and Wwise
also help the user by decreasing the development cost of OpenPL. This ease of
integration makes the tool more accessible to beginners and intermediates, who
may struggle to call the library’s methods correctly.

Code Structure
OpenPL uses a C Style API structure to avoid name mangling present in C++
libraries. Name mangling is avoided to ensure its compatibility with other
programming languages, such as C++ for Unreal Engine 4 and C# for Unity.
As libraries written in C do not mangle their function names, all library methods
must have a unique name. Therefore, all OpenPL methods begin with the prefix
“PL”.

To handle memory management, the library exposes a PL_SYSTEM object. Us-
ing this SYSTEM object, the library user needs only to manage the PL_SYSTEM
object, and not worry about freeing other parts of memory. The library exposes
PL_System_Create and PL_System_Release to handle creating and destroying
PL_SYSTEM objects.

The library exposes a second object to handle geometry and the simulation:
PL_SCENE. The creation method requires a pointer to a PL_SYSTEM ob-
ject, thereby relinquishing memory responsibility to the system. The API has
many methods for adding geometry to the PL_SCENE, adding source and
listener locations, simulating the geometry, and extracting information from the
simulation.

All library functions return a PL_RESULT. A PL_RESULT is an enum that
defines the return state of a method. Using the enum, a user can query if a
method was successful or whether an error had occurred. Using an enum is a
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more straightforward way of error handling, as the user need not worry about
exceptions.

The library also allows the user to receive debug messages from the library.
Using the PL_Debug_Initialize method, a user can send OpenPL messages to
the engine’s logging system.

Figure 7: OpenPL Structure

OpenPL objects are designed to have similarities to their game engine counter-
parts. For example, a PL_SYSTEM object is similar to a game engine - the
top-level manager of all objects - while a PL_SCENE object is similar to a scene
or level. This design is reminiscent of similar libraries that may call objects
Game Objects.

C++ And C#Wrapper
To make using OpenPL easier, a C++ and C# wrapper is included. While using
the raw C API is possible, a wrapper in the user’s native language is easier for
development.

External Libraries And Tools
While writing all code by hand is theoretically possible, it is nearly impossible in
practice. To speed up development, the library will use other libraries and tools.

For creating the final dynamic libraries for all platforms, OpenPL uses JUCE, a
cross-platform audio framework powering the popular tool Max MSP.

The libraries Eigen, libigl, OpenGL and others will allow the final product
to process and manipulate geometry, render results to the user and carry out
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complex mathematical equations.

Project Management
Popular software development methodologies include Agile and Scrum. Some
tools that support these development styles are Asana and Jira; another tool
popular in indie game development scenes is HacknPlan. These tools are excellent
for large teams with a consistent number of hours worked each week.

However, there is an overhead to using these tools. The tools assume users are
working in a team; therefore, there are many features to keep communication
open between members. However, when working alone, these features are not
always needed.

For this dissertation, project management will be laxer and rely on more basic
methods like to-do lists. The note-taking app Obsidian will track the completion
of tasks and any extra information about the project.

Version Control
Tracking changes throughout the development of the dissertation is paramount.
A common use of version control is to recover previously deleted work or quickly
change between versions.

For software, this dissertation uses Git, Git Tower and GitHub. Git Tower and
GitHub offer free pro licences for university students that add extra features over
free accounts, making them clear choices. While other version control systems
exist, Git was the preferred choice due to its support from GitHub.

Moreover, GitHub has the ‘GitHub Actions’ feature which allows a server to
test and run code. Using these tests, a developer can find bugs faster and
across multiple platforms. For this dissertation, GitHub Actions tests the main
simulation code and builds dynamic libraries for all three operating systems.
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Implementation
Initially, OpenPL was to research Project Acoustics and create a similar tool.
However, the maths became too difficult and the goals of the project changed.
The new goals became: create a tool to a professional standard, release the
tool for the three major operating systems and integrate it with Wwise, FMOD,
Unreal Engine and Unity.

Developing On Different Platforms
To develop for each operating system, the target operating system is required.
Windows releases free virtual machines with limited-time licences installed. Using
Virtual Box, a virtualisation application, developing for Windows was possible.
Lastly, as Ubuntu releases its operating system for free, using Virtual Box again
allowed for development on Linux.

Setup Script
To make it easy for users to install OpenPL, a setup script was created. On Mac,
this script downloads JUCE, libigl, its dependencies (glad, Eigen and GLFW),
GMP, MPFR, boost, CGAL and MatPlot++. Most installing is handled with
git and the Homebrew package manager.

On Linux, the installation process is similar to Mac with two differences. First,
additional libraries are required for JUCE to compile correctly. These number
around twenty additional libraries. However, some are installed as over precau-
tion. The second difference is that MatPlot++ cannot be installed through a
package manager on Ubuntu (Arch Linux is the only distribution with package
manager support). Therefore, MatPlot++ is installed with git and compiled
with CMAKE.

On Windows, compilation errors were encountered, stopping the development of
the setup script. These errors were found to be macros placed before function
declarations. To solve this, all macros were placed after the function’s return
type.

‘JUCE_PUBLIC_FUNCTION void FunctionName();’ became ‘void
JUCE_PUBLIC_FUNCTION FunctionName()’.

Once fixing the macros, the vcpkg was used to install dependencies. However,
installation can be slow as vcpkg installs packages from their source code. To
speed this up slightly, the GitHub actions’ “cache” tool was used to cache vcpkg
between builds, thereby reducing the build time to around ten minutes, similar
to Linux and Mac times.

GitHub Actions Automation
Continuous integration (CI) is a common approach employed by software devel-
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opers. Using CI, developers can test whether their code compiles on different
platforms and compile final packages for different platforms without developer
intervention.

GitHub provides their “Actions” tool to support CI. The script for OpenPL
is relatively simple. Past handling when the CI runs and for which platforms,
the script runs the setup script for the correct platform and then invokes either
xcodebuild, make or MSBuild.

This CI script is relatively simple, thanks to including the IDE files in the GitHub
repository. Without this, JUCE’s Projucer app would have to be compiled from
source and used to build the IDE projects. This extra step would significantly
increase the build times and complexity of the project.

Building A Single DLL
Building for Windows resulted in many DLL files. Therefore, when importing
into Unity, all of these extra files were required. This is a problem when shipping
because sending multiple files is harder and adds more room for errors and
missing files.

To try and solve these file problems, the Windows build was set to Static Runtime.
It was assumed all DLLs would get bundled together but that was not the case.
After much development and experimentation, OpenPL was left to build multiple
DLL files.

Afterwards, it was found that Project Acoustics also builds multiple DLLs,
evidenced by its Unity integration. With multiple DLL files not seen as a major
problem, the GitHub Actions script was updated to bundle all DLL files in a
final zip file.

Physics And Voxelising The Scene
From early research, the libigl library was shown to be a great library for
geometry processing. Handily, libgil and its dependency Eigen allows for Axis
Aligned Bounding Boxes (AABB). These are used frequently in games to test if
two objects are colliding due to their efficiency.

The artefact used AABBs at first for the reasons above. However, they have
a significant flaw: they cannot accurately handle rotated objects and complex
shapes. Keeping the name “box” in mind, one can imagine a box being drawn
around the extents of an object. When the object is a simple cube with no
rotation, the AABB matches the object incredibly well. However, rotate that
object, and suddenly, the AABB does not wrap the cube as tightly.

Now imagine a long rectangular object. At no rotation, the AABB is accurate.
However, turn this 45 degrees, and there is lots of empty space. This problem is
compounded when using complex shapes with multiple cuts and protrusions.
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Because of AABB’s flaws, some voxels were getting created for parts of the
scene that should clearly be empty space/air. However, due to the AABBs, the
simulation thought there was geometry where there was not.

To counteract this, an open-source physics library was searched for and React-
Physics3D was found. The library is feature-rich but quickly ran into segmenta-
tion errors and other memory problems during use.

Through opening a GitHub Issue, debugging the issue started with the library
creator. However, no solution was found. Therefore, the search began again.
This time, greater effort was put into searching the libigl library. Thankfully, a
solution in the form of “points_inside_component” was found.

This method correctly checked if points were inside a mesh. By passing each
point of the voxel and the mesh, it was easy to find what voxels were colliding
with the game meshes.

Testing this in Unity provided much more accurate results. There are still some
imperfections but can be better attributed to the voxel size than the approach
or collision algorithm.

The screenshot below shows the more accurate physics testing being used.

Figure 8: Accurate Voxelising

The sphere at the back of the scene is a good example of the new physics code
accurately conforming to the shape of the object. If AABBs were still used, an
entire “box” of voxels around the sphere would be filled.
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Passing Geometry To OpenPL
Sending geometry was solved early on in development. In Unity, one can get the
mesh vertices and indices. By sending the pointer of these arrays, OpenPL can
read the geometry and convert the data into its internal data format, which are
Eigen matrices.

Figure 9: Code Extracting Geometry From Unity

In the code above, it is shown that the easiest part is getting the raw vertices
and indices. Once the MeshFilter object is referenced with a GetComponent call,
one can access the underlying data with GetVertices and GetIndices methods.

The most complicated part of the process is pinning the arrays to retrieve a
pointer that can be passed to OpenPL. OpenPL expects raw pointers to the first
vertice and indice, and the length of each array. Due to C#’s design, one cannot
quickly retrieve a pointer to a data structure and must write code like above to
get an IntPtr type.

The screenshots below show Unity geometry successfully recreated in OpenPL.
The images with a purple background are OpenPL screenshots, while the screen-
shots with lighting and icons are Unity.
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Figure 10: Scene 1 Geometry In OpenPL

Figure 11: Scene 1 Geometry In Unity
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Figure 12: Scene 2 Geometry In OpenPL
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Figure 13: Scene 2 Geometry In Unity

Graph Rendering
After implementing a lot of the simulation, it became necessary to test its output.
Therefore, a graph was the first consideration as broken, or failed audio files are
hard to test past “it is wrong”. After searching, MatPlot++ was found, a C++
library based on MatLab’s MatPlot library.

Initial use of the tool involved testing its features and graph types. Eventually,
the “waterfall” graph was found and allowed for what looked like audio or wave
graph rendering. This ended up being perfect for the artefact’s uses as it allowed
a user to plot the data along the entire X-axis and time axis while also plotting
air pressure.

With these graphs, it became apparent when the simulation code was working
or not, and these graphs were paramount to finding success.

27



Exporting The Impulse Response
An “Analyser” class was created to handle taking the simulated voxel data from
the simulation and building a final impulse response file. Thanks to JUCE, this
process is rather simple.

Figure 14: C++ Code Constructing The Final Impulse Response File

Following JUCE’s audio recording demo, a file is first created. Then, a file
output stream and wave writer is created. An audio buffer filled with the air
pressure from the simulation can be sent to the wave writer and saved to the file
created earlier.

The final parts of the code handle getting the voxel index where the analyser
was asked to make an impulse response.

Parameter Extraction
The impulse response from the simulation was ineffective when passed to middle-
ware tools. This was primarily due to the low simulation frequency. Therefore,
extracting the parameters from the impulse response like Project Acoustics and
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Planeverb does was the solution.

DirectEnergy =
∫ τDS

τ

p2(t)dt

[Rosen et al., 2020]

τ defines the start of the impulse response with τDS = τ + 10ms. The formula
defines an equation that sums the squared pressure values from time 0 to 10ms,
multiplied by the spatial steps (or voxel size). The output of the equation is
“direct sound energy”.

To create a final “obstruction gain” value that can be sent to middleware tools,
two direct energy values are needed: the free energy from a simulation with
no geometry and the energy from a simulation with all geometry. Both are
calculated with the formula above.

With the two values, they can be plugged into the following equation to give a
final gain value of g.

g =

√
GeometryEnergy

FreeEnergy

[Rosen et al., 2020]

FreeEnergy is initially calculated by taking the energy 1 meter away from the
listener. When g is calculated, FreeEnergy is divided by the distance between
listener and emitter.

At first, the value was used as a literal gain value that either increased or
decreased the sound’s volume. However, more creative control was possible by
using the following formula.

Occlusion = 1− g

Using the above, a parameter in FMOD or Wwise could be used to indicate 0 as
no occlusion and 1 as full. Using effects in the middleware tool, a more creative
occlusion effect can be produced.

More parameters can be extracted from the impulse response, shown in the
Planeverb paper, however have not been implemented in this artifact.

FMOD Unity Integration (Impulse Responses)
Once OpenPL could build impulse responses from the simulation, it was time to
use these responses in a game engine. Unity and FMOD were chosen to start as
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both are friendly towards indie developers and it was assumed to be the easiest
to start with.

FMOD’s Unity integration is easy to use. Included by default are “StudioEven-
tEmitter”s that allow for easy playing of FMOD events. Setting one of these up
in the editor and then referencing it from the script allows easy access to all the
information needed for passing impulse responses.

Figure 15: Sending The OpenPL Impulse Response To An FMOD Convolution
Reverb

FMOD Studio Events are channel groups and groups under the hood. Therefore,
one can get the master channel group from a Studio Event Instance with ease,
as shown above. The rest of the code loops through all the DSPs attached to
the channel group until it finds one of type “Convolution Reverb”.

Once it finds the reverb attached to the event, the impulse response is loaded
from disk - “irSamplePath”. FMOD expects a byte array of all the data with
the first byte representing the number of channels. Therefore, the byte array is
created one larger than the actual impulse response length.

The first byte is filled with the channel count, then the impulse response is
copied into the byte array. Once filled, the array is sent to the DSP effect with
“setParameterData”. “DSP_CONVOLUTION_REVERB.IR” makes sure the
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array is sent to the correct parameter. The enum value represents the number
“0” and could have been used in place of the enum. However, if the API changes
in future versions, this will keep the code working correctly.

FMOD Unity Integration (Parameter Extraction)
The process above was the previous way integration worked when using impulse
responses. However, since using occlusion values and parameters, the integration
has become easier.

OpenPL defines a single method for extracting the occlusion value from a location.
This value can be passed straight to FMOD through its “setParameter” function.

Wwise Unity Integration (Impulse Responses)
Currently, Wwise is not integrated due to its API not exposing functions for
changing the impulse response of its convolution reverb during runtime. Because
of this, a custom plugin is needed so the impulse response can change from game
code.

Wwise Unity Integration (Parameter Extraction)
Implementing Wwise with OpenPL, bar the boilerplate of adding Wwise to
the project and setting up an emitter, is exactly the same as it is for FMOD.
However, FMOD’s Studio Event Emitter method ‘SetParameter’ is swapped for
the AkSoundEngine method ‘SetObjectObstructionAndOcclusion’ which takes
the listener and emitter as parameters.

FMOD Unreal Integration
Unlike Unity, one cannot drag and drop a dynamic library into the project and
expect the program to run. For Unreal, a natural solution is to create a plugin.
Unreal works on the principles of “modules”. The engine itself, as well as the
game’s code, are modules. Therefore, a plugin is an extra module added to the
game’s module. The user can define what files need to be compiled, as well as
any external dynamic libraries needed.

By creating an OpenPL plugin module, the Unreal facing API, the OpenPL
headers and the dynamic libraries can be defined and added to the game.

However, the first problem was the dynamic library not being found by Unreal.
When using the macOS tool “otool”, it was found the library file in the Unreal
plugin pointed to “/usr/local/lib”. As of writing, a solution has not been found.
To continue development, a copy of OpenPL was placed in the expected folder.
However, while development could continue, deploying to users will be a problem
and require fixing.
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To get the raw vertices and indices data from an Unreal mesh requires digging
through different classes and data types. However, the process is still relatively
simple as shown below.

Figure 16: Code Extracting Geometry From Unreal

One of the largest differences between Unity and Unreal meshes is having to
retrieve the mesh for the specified LOD level.

With geometry extraction handled, the process is rather similar to Unity to
trigger the simulation and retrieve occlusion values. There is a little more
overhead because you cannot directly reference a ‘StudioEventEmitter‘ like in
Unity or reference the player from the scene, but the process of digging through
a couple class variables is not too challenging.

The final hurdle for using Unreal Engine is converting the Unreal coordinate
system into a Unity/OpenPL coordinate system. This is rather simple and
consists of, for example, swapping the X coordinate for the Y coordinate. Finally,
Unreal’s units are in centimeters while Unity and OpenPL are in meters. The
solution is to divide all of Unreal’s coordinates by one-hundred.
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However, there is a final bug regarding the geometry: occlusion only works at
the top and bottom of objects. This is yet to be fixed but the cause is assumed
to lie in the voxelisation process.

Wwise Unreal Implementation
Integrating Wwise was a little harder than implementing FMOD. Wwise supports
occlusion and obstruction by default. These settings are defined globally in the
Wwise editor and its Unreal Engine implementation calls upon this functionality
to update occlusion values for any object the user wants.

Following this, one could assume using the code powering this system would
result in success, when swapping out certain parts for OpenPL. However, this is
untrue. In Wwise’s documentation, it makes note of the fact that all internal
code must be exposed via the Wwise implementation and not a separate module
or plugin.

Due to these problems, there were errors when creating the first implementation.
The solution was to create an RTPC on the sound object and set the RTPC,
ignoring Wwise’s global obstruction and occlusion system. However, this is
contrary to the Unity implementation where the global obstruction and occlusion
system is utilised. From this, it can be concluded that implementation will vary,
sometimes drastically, between different engines, middleware and platforms.

Simulation Implementation
To start learning the FDTD method, code from John B. Schneider’s “Under-
standing the Finite-Difference Time-Domain Method” [Schneider, 2010] was
used. Through reading the different chapters, a basic understanding of the
method was acquired. After implementing some of the code presented in Chapter
12 “Acoustic FDTD Simulations”, the artefact could run a very basic FDTD
simulation over the scene.
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Figure 17: First FDTD Implementation
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Figure 18: First FDTD Implementation With Reflecting Boundaries

The results of the first implementation are shown above. These simulations were
rather primitive and weren’t affected by the scene’s geometry. However, getting
this far was a big breakthrough.

After implementing this basic approach to understand the method, Planeverb’s
simulation code was implemented. This was a struggle at first due to Planeverb’s
code layout, but was eventually successful.

One of the first rendered graphs from using Planeverb’s simulation is shown
below.
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Figure 19: First Planeverb Simulation

The Planeverb code respected the geometry of the scene and was able to be
affected by the geometry sent from the game. The following graph shows the
simulation results at the emitter’s location shown in the screenshot.
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Figure 20: First Planeverb Simulation Applied To A Unity Scene
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Figure 21: First Planeverb Simulation Unity Scene

The next graph and screenshot shows a larger obstacle between the listener (and
the simulation start location) and the emitter.
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Figure 22: First Planeverb Simulation Applied To The Second Unity Scene

Figure 23: First Planeverb Simulation Second Unity Scene

Here is a graph showing the results of the emitter being placed closer to the
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listener with no wall in between.

Figure 24: Simulation Output Of Close Listener And Emitter With No Geometry

Failed Simulations

However, to get to this point involved running into many bugs. For instance,
this graph output shows a failed simulation. This simulation was an attempt at
making the Planeverb 2D simulation work in 3D. However, not enough knowledge
was known to correctly implement this.
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Figure 25: Failed Simulation Output

Performance And Speed

The dissertation’s first implementation of Planeverb’s code simulated over every
voxel in the 3D lattice. This caused long simulation times as shown below.

Results are taken from a 3.2 GHz Quad-Core Intel Core i5 with 24GB of DDR3
RAM.

Simulation Size (Meters) Voxel Size (Meters) Number Of Voxels Time (Seconds)
5x5x5 1 125 0.001399
10x10x10 1 1,000 0.01
20x20x20 1 8,000 0.09
40x40x40 1 64,000 0.89
100x100x100 1 1,000,000 20.95

However, Planeverb’s implementation is designed to work on a 2D grid, thereby
limiting the dimensions and speeding up the simulation.

Changing the code to simulate over a fixed Y-axis value results in these times.
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Simulation Size (Meters) Voxel Size (Meters) Number Of Voxels Time (Seconds)
5x5x5 1 125 0.000477
10x10x10 1 1,000 0.002672
20x20x20 1 8,000 0.021399
40x40x40 1 64,000 0.182111
100x100x100 1 1,000,000 2.922831

Comparing the two results, the performance benefits are clear to see; most
notably at 1,000,000 voxels where there is an 18 second improvement. At smaller
sizes, there are still significant performance improvements but less noticeable
due to the already fast simulation speed.

The graph below shows the output of the simulation at 100 meters cubed size.

Figure 26: Simulation Result On A 100x100x100 Meter Scene

Planeverb Codebase Review
As mentioned in the literature review, Planeverb is an open-source wave simula-
tion tool. This tool and its code is the foundation of this dissertation. Planeverb
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works by running a 2D FDTD simulation over a voxel scene. Planeverb fills
these voxels with AABBs informed from the game.

Planeverb takes a serious approach to speed and memory usage. Most notably,
all memory is allocated at application start, and placed in a collective memory
pool for its memory cache improvements.

However, these performance improvements hinder its readability and maintain-
ability. These challenges make the tool harder to move past research domains
and into production ready code that game developers can use.

Another problem in the code base is its variable naming, comments and struc-
ture. Variables are regularly named as their shorthand versions found in the
mathematical equations and comments are sometimes limited - again, assuming
the paper is used to understand the code. Finally, the structure is not laid out
as one would expect from C++.

To explain, a method can be declared in one file, and defined somewhere else.
Common practice is to place the declaration in a “<FileName>.h” and the
definition in a “<FileName>.cpp”. However, many functions declared in “A.h”
can be found in “B.cpp” - not “A.cpp”. This layout again hinders readability
and maintainability.

To compare, OpenPL follows the “functions declared in A.h will be defined in
A.cpp”, which improves maintainability.

However, while the code is sometimes hard to read, it is highly efficient and
effective in its results.
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Conclusion
OpenPL set out to be an indie friendly version of Project Acoustics with cross
platform support and better maintainability than Planeverb. On these points,
it is partially successful. OpenPL is cross platform - but suffers from large file
sizes and multiple files to juggle on Windows - and correctly integrates into both
Wwise and FMOD, but does not have the same number of features as either
Project Acoustics or Planeverb.

Currently, OpenPL is more a work in progress and proof of concept than a ready
commercial product. However, this is possibly expected with the time frame
and amount of research and learning required before development could start.
Moreover, OpenPL was still successful as a learning tool and research aid into
numerical simulations.

The time required to create a numerical audio simulation, compared to a geomet-
ric/raycast alternative, is quite drastic. As compared before, a simple raycast
solution can be finished within hours, while OpenPL took months, if not a full
year when counting research before the academic year. Because of these drastic
differences, the conclusion can be made that numerical simulations are not more
prevalent because of the time investment required. However, I believe Project
Acoustics, Planeverb and OpenPL prove the benefits of numerical simulations
and the powerful results they can yield.

While hard to predict, with Project Acoustics backed by Microsoft and seeing
support in their gaming consoles, numerical simulations can be assumed to gain
a larger adoption in the future. At what rate is unclear however. But with
hardware improvements making the technology easier to run, there will likely be
a time when numerical simulations are just as easy to run as raycasts.
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Appendix

Code Base
OpenPL is hosted at https://github.com/KarateKidzz/OpenPL (28th May 2021).

The GitHub repository is publicly available and ready to download.

The user can run the installation scripts and add the dynamic libraries to their
projects as needed.

SimulationVersusNoSimulation.mp4
This video shows the effects of OpenPL compared to a scene with no simulation.

RaycastVersusNoSimulation.mp4
This video shows the effects of raycasting for audio effects. The simulation
sounds correct in one instance but is too strong in another.

On the other hand, OpenPL produces a believable result in both instances.

WwiseUnity.mp4
This video shows the integration of OpenPL between Wwise and Unity.

The effect is similar to that of FMOD, however, the strength of the occlusion is
different.

FMODUnreal.mp4
This video shows the integration of OpenPL between FMOD and Unreal Engine.

The user will notice problems in the geometry, which is discussed in the paper.

WwiseUnreal.mp4
This video shows the integration of OpenPL between Wwise and Unreal Engine.

The user will notice problems in the geometry, which is discussed in the paper.
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